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Models of unsupervised, correlation-based (Hebbian) synaptic plastic- 
ity are typically unstable: either all synapses grow until each reaches 
the maximum allowed strength, or all synapses decay to zero strength. 
A common method of avoiding these outcomes is to use a constraint 
that conserves or limits the total synaptic strength over a cell. We study 
the dynamic effects of such constraints. 

Two methods of enforcing a constraint are distinguished, multi- 
plicative and subtractive. For otherwise linear learning rules, multi- 
plicative enforcement of a constraint results in dynamics that converge 
to the principal eigenvector of the operator determining unconstrained 
synaptic development. Subtractive enforcement, in contrast, typically 
leads to a final state in which almost all synaptic strengths reach ei- 
ther the maximum or minimum allowed value. This final state is often 
dominated by weight configurations other than the principal eigenvec- 
tor of the unconstrained operator. Multiplicative enforcement yields 
a "graded" receptive field in which most mutually correlated inputs 
are represented, whereas subtractive enforcement yields a receptive 
field that is "sharpened" to a subset of maximally correlated inputs. If 
two equivalent input populations (e.g., two eyes) innervate a common 
target, multiplicative enforcement prevents their segregation (ocular 
dominance segregation) when the two populations are weakly corre- 
lated; whereas subtractive enforcement allows segregation under these 
circumstances. 

These results may be used to understand constraints both over out- 
put cells and over input cells. A variety of rules that can implement 
constrained dynamics are discussed. 

Development in many neural systems appears to be guided by "Hebbian" 
or similar activity-dependent, correlation-based rules of synaptic modi- 
fication (reviewed in Miller 1990a). Several lines of reasoning suggest 
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Constraints in Hebbian Learning 101 

that constraints limiting available synaptic resources may play an impor- 
tant role in this development. 

Experimentally, such development often appears to be competitive. 
That is, the fate of one set of inputs depends not only on its own pat- 
terns of activity, but on the activity patterns of other, competing inputs. 
A classic example is given by the experiments of Wiesel and Hubel (1965) 
on the effects of monocular versus binocular visual deprivation in young 
animals (see also Guillery 1972). If neural activity is reduced in one eye, 
inputs responding to that eye lose most of their connections to the visual 
cortex, while the inputs responding to the normally active, opposite eye 
gain more than their normal share of connections. If activity is reduced 
simultaneously in both eyes for a similar period of time, normal develop- 
ment results: each eye’s inputs retain their normal cortical innervation. 
Such competition appears to yield a roughly constant final total strength 
of innervation regardless of the patterns of input activity, although the 
distribution of this innervation among the inputs depends on neural ac- 
tivities. Evidence of competition for a limited number of synaptic sites 
exists in many biological systems (e.g., Bourgeois et 01. 1989; Hayes and 
Meyer 1988a,b, 1989a,b; Murray et a / .  1982; Pallas and Finlay 1991). 

The existence of constraints limiting synaptic resources is also sug- 
gested on theoretical grounds. Development under simple correlation- 
based rules of synaptic modification typically leads to instability. Either 
all synapses grow to the maximum allowed value, or all synapses decay 
to zero strength. To achieve the results found biologically, a Hebbian 
rule must instead lead to the development of selectivity, so that some 
synaptic patterns grow in strength while others shrink. Von der Mals- 
burg (1973) proposed the use of constraints conserving the total synaptic 
strength supported by each input or output cell to achieve selectivity; 
related proposals were also made by others (Perez et a / .  1975; Rochester 
et al. 1956; Rosenblatt 1961). 

A constraint that conserves total synaptic strength over a cell can be 
enforced through nonspecific decay of all synaptic strengths, provided 
the rate of this decay is set for the cell as a whole to cancel the total 
increase due to specific, Hebbian plasticity. Two simple types of decay 
can be considered. First, each synapse might decay at  a rate proportional 
to its current strength; this is called multiplicative decay. Alternatively, 
each synapse might decay at a fixed rate, independent of its strength; this 
is called subtractive decay. The message of this paper is that the dynamic 
effects of a constraint depend significantly on whether it is enforced via 
multiplicative or subtractive decay. We have noted this briefly in previous 
work (MacKay and Miller 1990a,b; Miller 1990a; Miller ct nl.  1989). 

1 Simple Examples of the Effects of Constraints 

A few simple examples will illustrate that strikingly different outcomes 
can result from the subtractive or multiplicative enforcement of a con- 
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102 Kenneth D. Miller and David J. C. MacKay 

straint. The remainder of the paper will present a systematic analysis of 
these differences. 

Consider synaptic plasticity of a single postsynaptic cell. Let w be 
the vector of synaptic weights onto this cell; the ith component, w,, is 
the synaptic weight from the ith input. We assume synaptic weights are 
initially randomly distributed with mean wInlt, and are limited to remain 
between a maximum value w,,, and minimum value wmin. We consider 
the effect of a constraint that conserves the total synaptic strength, C, w,, 
implemented either multiplicatively or subtractively. 

Consider first a simple equation for Hebbian synaptic plasticity, 
(d/dt)w = Cw, where C is a matrix describing correlations among input 
activities (derived for example in MacKay and Miller 1990a). Suppose 
this correlation is a gaussian function of the separation of two inputs. 
We assume first that wmln = 0. The final outcomes of development under 
this equation are shown in Figure 1A. With no constraint (column l), all 
synapses saturate at wmax, so all selectivity in the cell’s response is lost. 
Under a multiplicative constraint (column 2), synaptic strengths decrease 
gradually from center to periphery. The final synaptic pattern in this case 
is proportional to the principal eigenvector of C. Under a subtractive con- 
straint (columns 3 and 4), a central core of synapses saturate at or near 
strength w,,,, while the remaining synapses saturate at wmln. If w,,, is 
increased, or the total conserved synaptic strength wtot is decreased by 
decreasing winlt, the receptive field is sharpened (column 4). In contrast, 
under the multiplicative constraint or without constraints, the shape of 
the final receptive field is unaltered by such changes in w,,, and wtot. 

This sharpening of the receptive field under subtractive constraints 
occurs because all synapses saturate, so the final number of nonzero 
synapses is approximately wtot/wmax. Such sharpening under subtractive 
constraints can create a precise match between two spatial maps, for 
example, maps of auditory and of visual space, despite spatially broad 
correlations between the two maps (Miller and MacKay 1992). 

If wmln is decreased below zero, center-surround receptive fields can 
result under subtractive constraints (Fig. 1B). In contrast, the results un- 
der multiplicative constraints or unconstrained dynamics are unaltered 
by this change. This mechanism of developing center-surround receptive 
fields underlies the results of Linsker (19861, as explained in Section 2.5. 
Again, an increase in w,,, or decrease in wtot leads to sharpening of 
the positive part of the receptive field under subtractive constraints (col- 
umn 4). 

Finally, consider ocular dominance segregation (Miller et al. 1989) 
(Fig. 1 0 .  We suppose the output cell receives two equivalent sets of 
inputs: left-eye inputs and right-eye inputs. A gaussian correlation func- 
tion C describes correlations within each eye as before, while between 
the two eyes there is zero correlation; and wmin = 0. Now results are 
much as in (A), but a new distinction emerges. Under subtractive con- 
straints, ocular dominance segregation occurs: the output cell becomes 
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Constraints in Hebbian Learning 103 
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Figure 1: Outcomes of development without constraints and under multiplica- 
tive and subtractive constraints. (A,B) Outcome of a simple Hebbian devel- 
opment equation: unconstrained equation is (d/dt)w = Cw. Initial synaptic 
weights are shown at the top left. The correlation matrix C is a gaussian func- 
tion of the separation between two synapses (shown at top right). (A) w,in = 0; 
(B) wmin = -2. (C) Outcome of a similar equation but with two identical sets of 
inputs, representing left- and right-eye inputs. Within each eye, correlations are 
the same as in (A); between the eyes there is zero correlation. Unconstrained 
equations are (d/dt)wL = CwL; (d/df)wR = CwR. All results are from simu- 
lations of a two-dimensional receptive field consisting of a diameter-13 circle 
of inputs drawn from a 13 x 13 square grid. The resulting receptive fields 
were approximately circularly symmetric; the figures show a slice horizontally 
through the center of the field. All simulations used w,,, = 8; all except (B) 
used w,in = 0. The left three columns show results for winit = 1 .  The right col- 
umn [subtractive(2)] uses winlt = 0.5, which halves the conserved total synaptic 
strength wtot. 

monocular, receiving input from only a single eye. Under multiplica- 
tive constraints, there is no ocular dominance segregation: the two eyes 
develop equal innervations to the output cell. Segregation under multi- 
plicative constraints can occur only if there are anticorrelations between 
the two eyes, as  will be explained in Section 2.6. 

In summary, unconstrained Hebbian equations often lead all synapses 
to saturate at the maximal allowed value, destroying selectivity. Multi- 
plicative constraints instead lead the inputs to develop graded strengths. 
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104 Kenneth D. Miller and David J. C. MacKay 

Subtractive constraints lead synapses to saturate at either the maximal 
or minimal allowed value, and can result in a sharpening to a few best- 
correlated inputs. They also can allow ocular dominance segregation to 
develop in circumstances where multiplicative constraints do not. These 
differences between subtractive and multiplicative constraints are easily 
understood, as we now show. 

2 Multiplicative and Subtractive Constraints for a Single Output Cell 

We begin with a general linear synaptic plasticity equation without de- 
cays, (d/dt)w(t) = Cw(t). We assume that the matrix C is symmetric: in 
Hebbian learning, C,, represents the correlation in activity between in- 
puts i and j, so C,, = C,,.' Thus, C has a complete set of orthonormal 
eigenvectors e" with corresponding eigenvalues A" (that is, Ce" = A"e"). 
Typically most or all of the eigenvalues of C are positive; for example, if 
C is the covariance matrix of the input activities then all its eigenvalues 
are positive. 

We use indices i, j to refer to the synaptic basis, and n .  b to refer to the 
eigenvector basis. The strength of the ith synapse is denoted by zu,. The 
weight vector w can also be written as a combination of the eigenvectors, 
w = 1, woe", where the components of w in the eigenvector basis are 
w, = w .  e". We assume as before that the dynamics are linear up  to hard 
limits on the synaptic weights, wmln 5 w,( t )  5 w,,,; we will not explicitly 
note these limits in subsequent equations. 

2.1 Formulation of Multiplicative and Subtractive Constraints. By 
a multiplicative or subtractive constraint, respectively, we refer to a time- 
varying decay term y(t)w or c(t)n that moves w, after application of C, 
toward a constraint surface. We assume y and c are determined by the 
current weight vector w(t) and do not otherwise depend on t, so we 
write them as y(w) or c(w). Thus, the constrained equations are2 

d -w(t) = Cw(t) - y(w)w(t) (Multiplicative Constraint) (2.1) 
dt 
d -w(t) = Cw(t) - c(w)n 
dt 

(Subtractive Constraint) (2.2) 

'We work in a representation in which each synapse is represented explicitly, and 
the density of synapses is implicit. Equivalently, one may use a representation in which 
the synaptic density or "arbor" function is explicit (MacKay and Miller 1990a, App. A). 
Then, although the equation governing synaptic development may appear nonsymmet- 
ric, it can be symmetrized by a coordinate transformation. Thus, the present analysis 
also applies in these representations, as further described in Miller and MacKay (1992, 
Ap B) 

?To understand why the term -y(w)w(t) represents a multiplicative constraint, 
consider a multiplicatively constrained equation w(t + At) = /j(w) [w(t) + Cw(t)At], 
where /j(w) achieves the constraint. This is identical to [w(t + At) - w(l)]/At = 
Cw(t) - y(w)w(t + At) where y(w) = [I - /j(w)]//j(w)At. For At - 0 this becomes 
equation 2.1. 
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Constraints in Hebbian Learning 105 

The vector n is a constant. Typically, all synapses have equal subtractive 
decay rate, so n = (1.1. . . . ,1 )T in the synaptic basis. 

Multiplicative or subtractive constraints represent two methods of en- 
forcing a constraint, that is, of maintaining the weight vector on some 
constraint surface. We now consider the type of constraint to be en- 
forced. We will focus on two types. First, a constraint may conserve the 
total synaptic strength C,  w,, as in Section 1. We refer to this as a type 1 
constraint, and to a multiplicative or subtractive constraint of this type 
as M1 or S1, respectively. These are frequently used in modeling stud- 
ies (e.g., M1: Grajski and Merzenich 1990; von der Malsburg 1973, 1979; 
von der Malsburg and Willshaw 1976; Perez et al. 1975; Rochester et al. 
1956; Whitelaw and Cowan 1981; Willshaw and von der Malsburg 1976, 
1979; S1: Miller 1992; Miller et al. 1989).3 We define a type 1 constraint 
more generally as one that conserves the total weighted synaptic strength, 
1, w,n, = w . n, where n is a constant vector. Typically, n = (1.1. . . . l)T. 
A type 1 constraint corresponds to a hyperplane constraint surface. 

For an S1 constraint, we choose the subtracted vector n in equation 2.2 
to be the same as this constraint vector n. This means we consider only 
subtractive constraints that project perpendicularly onto the constraint 
surface. Then type 1 constraints can be achieved by choosing 

M1: y(w) = n . Cw/n. w [with n. w(t = 0) # 01 (2.3) 
S1: F(W)  = n.Cw/n.n (2.4) 

These choices yield n. (d/dt)w = (d/dt)(n. w )  = 0 under equations 2.1 or 
2.2, respectively. 

Second, we consider a constraint that conserves the sum-squared 
synaptic strength, C, wf = w . w. This corresponds to a hypersphere 
constraint surface. We refer to this as a type 2 constraint (the numbers 
"1" and "2" refer to the exponent p in the constrained quantity C wr). 
This constraint, while not biologically motivated, is often used in theoret- 
ical studies (e.g., Kohonen 1989; Oja 1982). We will consider only multi- 
plicative enforcement of this constraint? called M2. M2 can be achieved 

'Many of these models used nonlinearities other than hypercube limits on synaptic 
weights. Our results nonetheless appear to correctly characterize the outcomes in these 
models. 

4Subtractive enforcement, 52, does not work in the typical case in which the fixed 
points are unstable. The constraint fails where n is tangent to the constraint hyper- 
sphere (i.e., at points where w ' n = 0). Such points form a circumference around the 
hypersphere. The S2 dynamics flow away from the unstable fixed points, at opposite 
poles of the hypersphere, and flow into this circumference unless prevented by the 
bounds on synaptic weights. 
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106 Kenneth D. Miller and David J. C. MacKay 

Table 1: Abbreviations used." 

Type 1 constraint 
Zero-sum vector 

M1 
s1 

Type 2 constraint 
M2 

Conserves the total synaptic strength, C, zoI = w n 
A vector w with zero total synaptic strength: 

Multiplicatively enforced type 1 constraint 
Subtractively enforced type 1 constraint, using 

perpendicular projection onto the constraint surface 
Conserves the length of the weight vector, 1, ~f = w . w 
Multiplicatively enforced type 2 constraint 

El w, = w . n = 0 

"The typical case n = ( 1 3  1 . .  . . , l ) '  is used to describe Type 1 constraints. 

by choosing 

M2: T ( W )  = W . C W / W . W  (2.5) 

This yields 2w.  (d/dt)w = (d/dt)(w. w) = 0 under equation 2.1. 

ble 1. 
The abbreviations introduced in this section are summarized in Ta- 

2.2 Projection Operators. Each form of constrained dynamics can be 
written (d/dt)w = PCw, where P is a projection operator that projects 
the unconstrained dynamics onto the constraint surface. For S1, the pro- 
jection operator is P = 1 - ( n n ' / n .  n),  for M1, it is P = 1 - (wnl/w.  n) ,  
and for M2, it is P = 1 - (ww'/w. w).  We can write these operators as 
P = 1 - (sc'/s. c), where s is the subtracted vector, c the coristrnint vector, 
and 1 the identity matrix (Fig. 2). The projection operator removes the c 
component of the unconstrained derivative Cw, through subtraction of 
a multiple of s. Thus, the subtracted vector s represents the method of 
constraint enforcement: s = w for multiplicative constraints, while s = n 
for subtractive constraints. The constraint vector c determines the con- 
straint that is enforced: the dynamics remain on the constraint surface 
w . c = constant. 

Given a constraint surface, there are two "natural" methods of con- 
straint enforcement: projection perpendicular to the surface (s = c), or 
projection toward the origin (s = w). For a type 1 constraint, these lead 
to different dynamics: S1 is perpendicular projection, while M1 is pro- 
jection along w. For a type 2 constraint, these are identical: M2 is both 
perpendicular projection and projection along w. 

2.3 Dynamic Effects of Multiplicative and Subtractive Constraints. 
In this section, we characterize the dynamics under M1, S1, and M2 con- 
straints. In Section 2.3.1, we demonstrate that under '31, the dynamics 
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Constraints in Hebbian Learning 107 

Figure 2: Projection onto the constraint surface. The projection operator is 
P = 1 - (scT/s . c). This acts on the unconstrained derivative Cw by removing 
its c component, projecting the dynamics onto the constraint surface c . PCw = 
c (d/dt)w = 0. This constraint surface is shown as the line perpendicular to c. 
The constraint is enforced through subtraction of a multiple of s: PCw = Cw-ps 
where /j = c .  Cw/c .  s. For multiplicative constraints, s = w; for subtractive S1 
constraints, s = c = n. 

typically have no stable fixed point, and flow until all synapses are sat- 
urated; while under multiplicative constraints, the principal eigenvector 
eo of C is a stable fixed point of the dynamics, provided that it satis- 
fies the constraint. In Section 2.3.2, we characterize the conditions under 
which multiplicatively constrained dynamics flow to the principal eigen- 
vector fixed point. In Section 2.3.3, we characterize the outcome under 
S1 constraints in terms of the eigenvectors of C. 

We begin by illustrating in Figure 3 the typical dynamics under M1, 
S1, and M2 in the plane formed by the principal eigenvector of C, eo, and 
one other eigenvector with positive eigenvalue, e' . Figure 3 illustrates 
the main conclusions of this section, and may be taken as a visual aid 
for the remainder: 

0 In Figure 3A we illustrate M1 and S1 dynamics in the case in which 
the principal eigenvector e" is close in direction to the constraint 
vector n (n is the vector perpendicular to the constraint surface). 
This is typical for Hebbian learning when there are only positive 
correlations and the total synaptic sum is conserved, as in the ex- 
amples of Section 1. Positive correlations lead to a principal eigen- 
vector in which all weights have a single sign; this is close in di- 
rection to the usual constraint vector (1.1.. . . l)T, which conserves 
total synaptic strength. In this case, growth of eo would violate the 
constraint. Multiplicative and subtractive constraints lead to very 

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/6/1/100/812658/neco.1994.6.1.100.pdf by C
olum

bia U
niversity Libraries user on 07 M

arch 2025



108 Kenneth D. Miller and David J. C. MacKay 

different outcomes: multiplicative constraints lead to convergence 
to e", whereas subtractive constraints lead to unstable flow in a di- 
rection perpendicular to n. The outcome in this case was illustrated 
in Figures lA,B. 

0 In Figure 38 we illustrate M1 and S1 dynamics in the case in which 
the principal eigenvector e" is parallel to the constraint surface: 
e" . n = 0. We call such vectors w, for which w .  n = 0, zero-sum 
vectors. Growth of a zero-sum vector does not violate the type 1 
constraint. For practical purposes, any vector that is approximately 
parallel to the constraint surface, so that it intersects the surface far 

A UNCON. 

e\ 

el ""t;."' 
eo + 
eo' 

eo eo 

C 
el 

eo 

M2 
el 
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Constraints in Hebbian Learning 109 

outside the hypercube that limits synaptic weights, may be treated 
as  a zero-sum vector. The principal eigenvector is typically a zero- 
sum vector in Hebbian learning when correlations among input 
activities oscillate in sign as a function of input separation (Miller 
1990a). Such oscillations lead to a principal eigenvector in which 
weights oscillate in sign, and sum approximately to zero; such 
a vector is approximately perpendicular to the constraint vector 
(1,1,. . . , l)T. In this case, growth of e0 does not violate the con- 
straint. The type of constraint enforcement makes little difference: 
the weight vector typically flows to a saturated version of e". 

0 Under M2 constraints (Fig. 3 0 ,  the principal eigenvector eo is al- 
ways perpendicular to the constraint surface, and its growth would 
always violate the constraint. The dynamics converge to eo. 

2.3.1 General Differences between Multiplicative and Subtractive Constraint 
Enforcement: Fixed Points and Stability. We now establish the essential dif- 
ference between multiplicative and subtractive constraints. To d o  so, 
we  examine the locations and stability of the fixed points that are in 
the interior of the hypercube of allowed synaptic weights ("interior fixed 

Figure 3: Facing page. Dynamics under multiplicative and subtractive con- 
straints. Dynamics in the plane formed by the principal eigenvector of C, e", 
and one other eigenvector with positive eigenvalue, el. (A) M1 and S1 con- 
straints when e0 is close in direction to n. Diagonal lines indicate the constraint 
surface on which n . w is constant. Unconstrained: arrows show the uncon- 
strained derivative Cw from the point w at the base of the arrow. M1: Solid 
arrows show the unconstrained flow; dashed arrows show the return path to 
the constraint surface (as in Fig. 2). Return path is in the direction w. Open cir- 
cle indicates unstable fixed point, large filled circle indicates stable fixed point. 
The fixed points are the eigenvectors, where Cw cx w. S1: Return path is in the 
direction n. The fixed point is the point where Cw x n (indicated by perpen- 
dicular symbol), and is unstable. Second row: The resulting constrained flow 
along the constraint surface for M1 and S1. (B) M1 and S1 constraints when eo is 
perpendicular to n. The constraint surface does not intersect eo. M1 and S1 lead 
to similar outcomes: unstable growth occurs, predominantly in the eo direction, 
until the hypercube that limits synaptic weights is reached. The outcome is ex- 
pected to be a saturated version of keo. Note that the unconstrained dynamics 
also flow predominantly in the heo direction and so should lead to a similar 
outcome. For convenience, we have chosen the constraint direction n = el. 
(C) M2 constraints. The return path is in the direction of w, as for M1. Thus, 
locally (for example, near the fixed points) the dynamics are like M1. On a large 
scale, the dynamics differ because of the difference in constraint surface. Left, 
unconstrained derivative and return path; right, constrained flow. Figures were 
drawn using eigenvalues: Xo/X' = 3; constraint vector in A: n .  eo/n. e* = 1.5. 
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110 Kenneth D. Miller and David J. C. MacKay 

points"). A fixed point w"' is a point where the flow ( d / d t ) w  = 0. For C 
symmetric, the constrained dynamics must either flow to a stable interior 
fixed point or else flow to the hypercube. 

We will show that the only stable fixed point of multiplicatively con- 
strained dynamics is the intersection of the principal eigenvector e" of C 
with the constraint surface; and that if eo intersects the constraint surface, 
then the dynamics typically converge to eo, as was illustrated in Section 1. 
Under subtractive S1 constraints, there is generally no stable fixed point 
within the hypercube. S1 dynamics typically are only stabilized once all 
synapses (or all but one) reach saturation at w,,, or wn,in. 

The locations of the interior fixed points follow trivially from equa- 
tions 2.1-2.2 and the fact that the dynamics remain on the constraint 
surface: 

0 The fixed points under a multiplicatively enforced constraint are the 
intersections of the eigenvectors of C with the constraint surface, 
that is, the points w on the constraint surface at which Cw 0: w. 

0 The fixed points under a subtractively enforced constraint are the 
points w on the constraint surface at which Cw rx n. 

The stability of a fixed point can be determined as shown in Figure 3A, 
by determining whether a point perturbed from the fixed point is taken 
farther away by the dynamics. Generalizing the reasoning illustrated 
there, it is easy to prove (Appendix): 

Theorem 1. Under a multiplicatively enforced constraint, if the principal eigen- 
vector of C is an interior fixed point it is stable. lnterior fixed points that are 
nonprincipal eigenvectors are unstable. 

Theorem 2. Under an S1 constraint, if C has at least two eigenvectors with 
positive eigenvalues, then any interior fixed point is unstable. 

A case of theorem 1 for M2 constraints was proven by Oja (1982). 
Theorem 2 shows that S1 dynamics are unstable when no synapse is 

saturated. If in addition the following condition holds, as occurs when 
C is a correlation matrix, then these dynamics remain unstable until all 
synapses have saturated (Appendix): 

Theorem 3. Let i and j be indices in the synaptic basis. Suppose that for all i and 
j with i # j ,  Ci; > (C;,l. Then under an S1 constraint, either all synapses or all 
but one are saturated in a stable final condition. 

This condition is satisfied for Hebbian models, because Ci, represents 
the correlation in activities between input i and input j .  The result is 
sharply different from that for multiplicative constraints: in that case, 
the principal eigenvector may be a stable fixed point with no synapse 
saturated. This theorem generalizes a result proven by Linsker (1986). 
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Constraints in Hebbian Learning 111 

Theorem 3 explains the sharpening of the receptive field that occurs 
under an S1 constraint (Fig. 1). A practical implication is that an up- 
per limit on synaptic strengths, zo,,,, is needed for stability under an S1 
constraint (whereas no such limit is needed under a multiplicative con- 
straint). If there is no upper synaptic limit, eventually one synapse will 
acquire all of the allowed synaptic strength, while all other synapses will 
become saturated at ~ i i ~ , ~ , , .  

2.3.2 The Outcorne iirzifer Miiltiplicative Corzstraints. From the previous 
section, we conclude that a multiplicatively enforced constraint results in 
convergence to the principal eigenvector e0 of C provided (1) the princi- 
pal eigenvector intersects the constraint surface within the hypercube of 
allowed weights, forming a stable fixed point; and (2) the initial weight 
vector is within the basin of attraction of this fixed point. We ignore the 
possible effect of the hypercube, and assess when these conditions are 
met. 

Under M2 constraints, both of these conditions are always satisfied 
(Fig. 3C), so M2 constraints always lead to convergence. 

Under M1 constraints, condition (1) is satisfied when en is nonzero- 
sum (Fig. 3A). Then, for n = (1.1. . . . , 1  )I, condition (2) is also satisfied in 
at least two typical cases: if both the initial weight vector and the prin- 
cipal eigenvector have no changes in sign, or if weights are initialized as 
small fluctuations about a nonzero mean5 Thus, M1 constraints typically 
converge to en when e" is nonzero-sum. 

2.3.3 The Outcome iirzifcr SI Coiistroirzfs. S1 constraints lead to altered, 
linear dynamics. To see this, write the subtractively constrained equation 
as (d/dt)w(t) = PCw(t) with P = 1 - nn'; here, n = n/lnl. Write w as 
the sum w(t)  = Pw(t) + zo,,n, where w,, = w . n is conserved. Then the 
dynamics can be written: 

(2.6) 

PCP is the operator C, restricted to the subspace of zero-sum vectors. 
w,,PCn is a constant vector. 

Thus, S1 constraints lead to linear dynamics driven by PCP rather 
than by C. These dynamics have been characterized in MacKay and 

d 
d t  
-w(t) = PCPw(t) + 7o,,Pcn 

'Let Ae'l be the stable fixed point, and let wg be the initial weight vector on the 
constraint surface. Condition (2) is satisfied if wg . (/je") > 0. Suppose the constraint 
conserves w . ti = 7u , , ,  so that wll n = /je" . n = UI,,. Then if wo and e" are each single- 
signed, they must have the same sign so wg . (de" )  > 0. I f  weights are initialized as 
small fluctuations about a nonzero mean, then wg Y 7u,,n, so wg (/jell) Y ws > 0. 
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Miller (1990a, Appendices B and E). To understand them, consider first 
the eigenvectors of PCP. These are of two types: 

1. Any zero-sum eigenvector of C is also an eigenvector of PCP with 
identical eigenvalue. So zero-sum eigenvectors of C grow freely, at 
the same rate as they would in the absence of constraints. 

2. Each nonzero-sum eigenvector of C is replaced by a corresponding 
zero-sum eigenvector of PCP with smaller eigenvalue+' for exam- 
ple, an all-positive, centrally peaked nonzero-sum eigenvector of C 
may be replaced by a center-surround (positive center and negative 
surround) zero-sum eigenvector of PCP. Eigenvalue order of the 
nonzero-sum eigenvectors is preserved under this correspondence. 

Now consider the constant term w,,PCn. This term boosts the growth rate 
of the eigenvectors of PCP that compose it. These are the eigenvectors 
derived from the nonzero-sum eigenvectors of C. 

Thus, under S1 constraints, the dynamics may be dominated either 
by the principal zero-sum eigenvector of C, or by a zero-sum vector that 
replaces the principal eigenvector. Both vectors may be very different 
from the principal eigenvector of C. 

2.3.4 Summary: The Outcome under M1, SZ and M2.  Multiplicative and 
subtractive constraints lead to dramatically different outcomes in many 
cases. In particular, under a type 1 constraint, multiplicative constraints 
converge to a dominant nonzero-sum pattern, whereas subtractive con- 
straints suppress such a pattern in favor of a zero-sum pattern. We may 
summarize as follows: 

1. If the principal eigenvector eo of C is a nonzero-sum vector and 
intersects the constraint surface within the hypercube, as is typical 
for Hebbian learning when there are only positive correlations, then 

a. M1 constraints lead to a stabilized version of eo; 
b. S1 constraints lead to a zero-sum vector that grows to com- 

plete saturation, superimposed on the constrained background 
(w . n)n. The dominant zero-sum vector may be either 

i. A zero-sum vector derived from eo, as in Figure lA,B; or 
ii. The principal zero-sum eigenvector of C. 

2. If the principal eigenvector e0 of C is a zero-sum vector, as is typ- 
ical for Hebbian learning when correlations among input activities 
oscillate in sign, then a type 1 constraint has little effect; the un- 

'There is one exception: the nonzero-sum eigenvector of C with smallest eigenvalue 
is replaced by n, which is an eigenvector of PCP with eigenvalue 0. 
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Constraints in Hebbian Learning 113 

constrained dynamics or M1 or S1 constraints all lead to saturated 
versions of eo. 

3. M2 constraints always lead to a stabilized version of the principal 
eigenvector of C, unless the hypercube limiting synaptic weights 
interferes with the dynamics. 

2.4 What Is Maximized under Multiplicative and Subtractive Con- 
straints? Under multiplicative constraints, the weight vector tends to 
a multiple of the principal eigenvector e0 of C. This is the direction in 
weight space that maximizes WTCW over all directions W. This maximizes 
the mutual correlations among the weights; so most mutually correlated 
inputs are expected to retain representation. 

Under S1 constraints, for C symmetric, the dynamics maximize E = 
~wTCPW + w,wTPCn (Section 2.3.3). For w,, sufficiently small, the first 
term dominates, so the weight vector is dominated by the principal eigen- 
vector e! of PCP. This is the direction in weight space that maximizes 
W'CW over all zero-sum directions W. When n = (1.1.. . . . l)T, e; is a 
vector in which some subset of maximally correlated weights are set to 
positive values, and remaining weights are set to negative values. In the 
final weight structure, positive weights in e: tend to wnlJX, while negative 
weights tend to wmin. The receptive field thus becomes sharpened to a 
subset of maximally correlated inputs. 

2.5 Application to Simple Hebbian Learning, Including Linsker's 
Simulations. The results just derived explain the outcome for simple 
Hebbian learning with a positive correlation function (Fig. lA,B). M1 
constraints lead to convergence to the principal eigenvector e", which is 
all-positive. S1 constraints instead lead to growth of a zero-sum vector; 
in Figure lA,B, this vector is a center-surround vector derived from e". 

The results of Section 2.3.3 explain some of the results found by 
Linsker (1986). He explored Hebbian dynamics under S1 constraints 
with a gaussian correlation function, using w,in = -w,,, and a spatially 
gaussian distribution of inputs. Then, as analyzed in MacKay and Miller 
(1990a,b), the leading eigenvector of C is an all-positive eigenvector, and 
the zero-sum vector derived from this is a center-surround vector. The 
leading zero-sum eigenvectors of C, and leading eigenvectors of the con- 
strained operator PCP, are two vectors that are bilobed, half positive and 
half negative. The all-positive eigenvector dominates the unconstrained 
development. For small values of w,,, the bilobed vectors dominate the 
constrained development. For larger values of w,,, the contribution of 
the w,PCn term to the growth of the center-surround vector allows the 
center-surround vector to dominate the constrained development within 
the hypercube, despite its having a smaller eigenvalue than the bilobed 
vectors under PCP. 
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2.6 Extension to Two Input Layers. We now consider the case in 
which two equivalent input layers innervate a common output cell 
(Fig. 1C). For example, in the visual system, inputs serving the left eye 
and right eye each project to the visual cortex, in an initially completely 
overlapping manner (Miller et al. 1989). Similarly, ON-center and OFF- 
center cells make initially equivalent projections to visual cortex (Miller 
1992). 

Let wl, w2, respectively, be the synaptic weight vector from each 
input projection. Define the sum, ws = w1 + w2, and the difference, 
WD = w1 - w2. Because of the symmetry between the two input lay- 
ers, the eigenvectors of the unconstrained equation can be divided into 
sum eigenvectors, ws = e,S, wD = 0, with eigenvalues As; and difference 
eigenvectors, wD = e,D, ws = 0, with eigenvalues XA (Miller 19904. 

Now an additional critical distinction emerges between subtractive 
and multiplicative constraints. A type 1 constraint conserves the total 
synaptic strength C, ws. Patterns of wD have zero total synaptic strength 
(i.e., are zero-sum vectors). Therefore, wD grows freely under an S1 
constraint, whereas under a multiplicative constraint growth of wD is 
suppressed unless a difference eigenvector is the principal eigenvector of 
the unconstrained development. 

In models of ocular dominance segregation, the principal eigenvector 
is typically determined as follows (Miller 1990a). Let A:,, and Xi,,  be 
the largest sum and difference eigenvalues, respectively. If there are 
positive correlations between the activities of the two eyes, then A:,,, > 
A:,,. If there are no between-eye correlations, then A:,,, = Xi,,. If these 
correlations are negative, then A!ax > AS,,,,. 

Thus, under a multiplicative constraint, wD cannot grow, and ocular 
dominance segregation cannot occur, unless the two eyes are negatively 
correlated7 (Miller et al. 1989). Such anticorrelations could be produced by 
intralaminar inhibition within the LGN. However, it seems unlikely that 
ocular dominance segregation depends on anticorrelations, since ocular 
dominance develops in the presence of vision in some animals, and vision 
should partially correlate the two eyes. 

> 0. The dynamics un- 
der an S1 constraint may be dominated either by egax, or by the zero-sum 
vector that derives from e:,,, depending on which has the faster growth 
rate (Section 2.3.3). In practice, ocular dominance segregation develops 
under an S1 constraint even if there are positive between-eye correlations 
of moderate size relative to the within-eye correlations (unpublished ob- 
servations). Thus, subtractive rather than multiplicative enforcement of 
constraints appears more appropriate for modeling Hebbian develop- 
ment in visual cortex. 

Under an Sl constraint, wD will grow if 

71f between-eye correlations are zero, then under multiplicative constraints the ratio 
of the principal eigenvector components, w ~ ~ ~ / w ~ , ~ ~ ,  does not change under time de- 
velopment, while all other components are suppressed. Typically this ratio is initially 
small, so ocular dominance segregation does not occur. 

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/6/1/100/812658/neco.1994.6.1.100.pdf by C
olum

bia U
niversity Libraries user on 07 M

arch 2025



Constraints in Hebbian Learning 115 

3 Constraints Given a Full Layer of Output Cells 

When modeling Hebbian learning in a full layer of output cells, two dif- 
ferences arise compared to the case of an isolated cell. First, constraints 
may be applied to the total innervation onto each output cell (M1: Grajski 
and Merzenich 1990; von der Malsburg 1973; von der Malsburg and Will- 
shaw 1976; Willshaw and von der Malsburg 1976; S1: Miller 1992); or 
to the total innervation from each input cell (M1: von der Malsburg 
1979; Willshaw and von der Malsburg 1979); or to both (M1: Whitelaw 
and Cowan 1981; S1: Miller et a/. 1989). Second, there is usually cou- 
pling between the weight changes on different output cells. For example, 
neighboring cells’ activities may interact through intralaminar synaptic 
connections, causing the evolution of their weights to be coupled; or 
modulatory factors may diffuse, directly affecting neighboring synapses. 
Both types of coupling may take the mathematical form of an output 
layer ”lateral interaction function” (Miller 1990b; Miller et nl. 1989). For- 
mulation of constraints in the case of a full layer is discussed in Miller 
and MacKay (1992, Appendix C). 

We have not studied constraints over a full layer in detail. However, 
the following heuristics, based on the single cell studies of Section 2, 
appear to be compatible with the studies cited in the previous paragraph 
and with unpublished observations. We refer to the projection to a single 
output cell as a receptive field or RF, and the projection from a single 
input location as a projective field or PF. The eigenvectors are patterns 
of weights across the entire network, not just across individual RFs or 
PFs. In simple Hebbian models, the dominant, fastest-growing patterns 
can often be characterized as follows. 

First, in the absence of constraints, the RFs of the dominant patterns 
are primarily determined by a particular input correlation function, and 
the PFs of the dominant patterns are similarly determined by the output 
layer lateral interaction function (Miller 1990a). If the correlations are all 
positive, the RFs have a single sign; if correlations oscillate in sign with 
input separation, the RFs oscillate in sign with a similar wavelength. A 
single-signed RF can be regarded as one that oscillates with an infinite 
wavelength, so we may summarize: in the absence of constraints, the RFs 
of the dominant patterns vary between positive and negative values with 
a wavelength corresponding to the peak of the Fourier transform of the 
appropriate input correlation function. Similarly, the PFs of the dominant 
patterns vary between positive and negative values with a wavelength 
corresponding to the peak of the Fourier transform of the output layer 
lateral interaction function. 

Second, constraints on output cells appear only to affect the form 
of the individual RFs, while constraints on input cells only affect the 
form of the individual PFs. Consider the case of two layers that are 
topographically connected: each input cell initially makes synapses onto 
cells over a certain diameter (”arbor diameter”) in the output layer, and 
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adjacent input cells project adjacent arbors. Then output cells also receive 
connections over an arbor diameter from the input layer. Suppose that 
output or input cell constraints conserve total synaptic strength over the 
cell. Then an RF or PF that alternates in sign with a wavelength less than 
or equal to the arbor diameter is approximately zero-sum, that is, it has 
summed synaptic strength near 0. An RF or PF that alternates with longer 
wavelength is nonzero-sum. Subtractive constraints selectively suppress 
the growth of nonzero-sum patterns, whereas multiplicative constraints 
stabilize the growth of a dominant nonzero-sum pattern. 

Thus, we arrive at the following heuristic rules for the wavelength 
with which RFs or PFs alternate in sign (Fig. 4): 

1. If the dominant pattern in the absence of constraints has (RF,PF) 

a. Subtractive (output,input) constraints suppress this pattern in 
favor of a pattern with (RF,PF) wavelength of an arbor diam- 
eter; 

b. Multiplicative (output,input) constraints do not alter the (RF, 
PF) wavelength of this dominant pattern, but only stabilize its 
amplitude. 

2. If the dominant pattern in the absence of constraints has (RF,PF) 
wavelength smaller than an arbor diameter, then (output,input) 
constraints, whether enforced multiplicatively or subtractively, will 
have little effect. 

wavelength larger than an arbor diameter, then 

In all cases, saturation of all synapses is expected without constraints or 
under subtractive constraints, but not under multiplicative constraints. 

Several cautions must be emphasized about this approach. First, it 
predicts only the characteristic wavelength of weight alternation, and 
does not distinguish between different weight structures with similar 
wavelength. Second, the approach is heuristic: its validity must be 
checked in any particular case. In particular, the final weight pattern 
is expected to be one in which the dominant PF and RF patterns are 
”knitted together” into a compatible overall pattern. If such a “knitting” 
is not possible, the heuristics will fail. 

This analysis can be applied to understand the effects of subtractive 
input constraints on ocular dominance segregation. Consider the de- 
velopment of the difference WD between projections from the two eyes 
(Section 2.6). An RF across which wD is all-positive or all-negative cor- 
responds to a monocular receptive field. Subtractive output constraints 
have no effect on the development of wD: such constraints affect only the 
sum, not the difference, of the two projections. When RFs are monocular, 
an oscillation across PFs of wD corresponds to the oscillation between oc- 
ular dominance columns (Fig. 4). Subtractive input constraints separately 
conserve the total strength from the left-eye input and from the right-eye 
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CORRELATION 
FUNCTION 

RECEPTIVE FIELD 

LATERAL 
INTERACTION 
FUNCTION 

PROJECTIVE FIELD 

Figure 4: The role of constraints on input and output cells: a heuristic approach. 
Top: Output cell receptive fields (RFs) expected to develop under unconstrained 
dynamics (U), or under M1 or S1 constraints on output cells. White regions in 
receptive fields indicate positive weights; dark regions indicate zero or negative 
weights, depending on whether w,in is zero or negative. Correlations between 
input activities are shown as a function of input separation. Without constraints 
or under M1, the weights vary in sign to match the oscillation of the correlation 
function. Under S1, the weights always alternate in sign, with wavelength 
no larger than an arbor diameter. Note that this approach does not distinguish 
between different weight structures with similar wavelength of alternation, such 
as the two lower RFs. Bottom: Input cell projective fields (PFs) are determined 
in the same manner as RFs, except that (1) the determining function is the 
output layer lateral interaction function; and (2) the determining constraints are 
those an  input cells. Here, solid lines indicate positive weights, dashed lines 
indicate zero or negative weights. 
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input at each position, and so conserve the total difference wD from each 
input position. Thus, these constraints ensure that there is an oscilla- 
tion of wD across PFs with wavelength no larger than an arbor diameter. 
Subtractive input constraints thus determine the width of a left-eye plus 
a right-eye ocular dominance column to be an arbor diameter when the 
unconstrained dynamics would lead to larger columns, but have little 
effect on ocular dominance segregation otherwise (Miller ct nl.  1989). 

4 How Can Constraints Be Implemented? 

4.1 Learning Rules That Converge to Constrained Dynamics. The 
formulations in equations 2.3-2.5 confine the dynamics to the constraint 
surface that contains the initial weight vector. Alternatively, constraints 
may be formulated so that the dynamics converge from an arbitrary initial 
weight vector to one particular constraint surface, and remain on  that 
constraint surface thereafter. In this case the dynamics are described by 
equations 2.3-2.5 after an initial transient in which the constraint surface 
is reached. 

Such a formulation of S1 constraints is obtained by setting c(w) = 
Ik2)(n.w-kl) for constants kl and k2 in equation 2.2. When lkzl is large, this 
term enforces the constraint n .  w = kl (Linsker 1986) and is equivalent to 
an S1 constraint (MacKay and Miller 1990a, Appendix E). Multiplicative 
constraints can be similarly formulated. 

Dynamics that converge to a multiplicative constraint can also be ob- 
tained by substituting a constant k > 0 for the denominator of ~ ( w )  in 
equations 2.3 or 2.5. Let c be the constraint vector (for M1, c = n; for M2, 
c = w) and set y(w) = c.Cw/k. Then, if the initial condition and dynam- 
ics maintain c . Cw > 0, the dynamics will flow to the constraint surface 
c . w = k and remain stable to perturbations off it thereafter [as can be 
seen by examining c . (d/dt)w]. Oja (1982) studied such M2 constraints 
with k = 1 and proved convergence to the principal eigenvector. 

Finally, if the principal eigenvalue A" of C is positive, convergent mul- 
tiplicative dynamics can also be formulated by using any y(w) in equa- 
tion 2.1 that grows with IwI and takes values both smaller and larger than 
A" (B. Pearlmutter, unpublished manuscript). This leads to convergence 
to a multiple of the principal eigenvector, ijeo, satisfying the constraint 
i(i1e") = A". An example is y(w) = lwI2 (Yuille et al. 1989). 

4.2 Use of Thresholds to Achieve Constraints. Consider a linear 
Hebbian rule: 

(4.1) 

Here y is the activation of the output cell, x the vector of input activities, 
and xo and yo are threshold activity levels for Hebbian plasticity. Assume 

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/6/1/100/812658/neco.1994.6.1.100.pdf by C
olum

bia U
niversity Libraries user on 07 M

arch 2025



Constraints in Hebbian Learning 119 

a linear activation rule, y = w . x. We average equation 4.1 over input 
patterns, assuming that XH and yH are constant over input patterns. The 
resulting equation is 

(4.2) 

where Q is the input covariance matrix, Q = X ( (x  - (x) )  (x - (x))'), and 
(y) = w . (x). The second term is a decay term, and can enforce a con- 
straint. 

If the elements of [(x) ~ xo] are large and negative, the type 1 con- 
straint (y) = yo, that is, w .  (x) = yo, will be enforced. If XH is independent 
of w, this constraint is enforced subtractively; if furthermore all inputs 
have the same mean activity level and threshold, this is an S1 constraint, 
as discussed in Section 4.1 and as used in Linsker (1986). The presynap- 
tic threshold xg can also enforce a constraint if its elements increase with 
those of w. For example, an M2 constraint that converges to w . w = 1 
(Section 4.1), when applied to the unconstrained equation (d/Lit)w = yx, 
yields the rule proposed by Oja (1982): (d/cft)w = yx - w(w . yx), or 
(d/dt)w = y(x - wy). This is XH = wy.' 

Both of these mechanisms require that inputs activated at an average 
or below-average level lose synaptic strength when the postsynaptic cell 
is highly activated. This is not the case in at least one biological system, 
LTP in hippocampus (Gustafsson ef al. 1987). This difficulty is avoided 
by the choice xH = w, which yields the multiplicatively stabilized rule 
(d/dt)w = y(x  - w).  This rule does not ensure a selective outcome: as 
noted in Kohonen (1989, Section 4.3.2), it converges either to the principal 
eigenvector of C = (xx'), or else to w = 0. However, with a nonlinear, 
competitive rule for y that ensures localized activation, this rule is that 
of the self-organizing feature map of Kohonen (1989) and does achieve 
selectivity. 

The postsynaptic threshold, yo, can enforce a constraint if i t  increases 
faster than linearly with the average postsynaptic activation, (y), and if 
the elements of [(x) - xf,] are positive. Bienenstock e t a l .  (1982) proposed 
the rule yH = (y)' /~,,~, where ySet is a cell's "preset" desired activity 
level. They combined this with a nonlinear Hebbian rule, for example, 
y(y - yH) in place of (y  - yH) in equation 4.1. With either Hebbian rule, 
this "sliding threshold" has the effect of adjusting synaptic strengths to 
achieve (y) % yH, or (!y) = w (x) % yset. Thus, it provides another method 
of achieving a type 1 constraint. Recent results both in the peripheral 
auditory system (Yang and Faber 1991) and in hippocampus (Huang et 01. 
1992) are suggestive that increased neural activity may elevate a threshold 
for modification, but in a manner specific to those inputs whose activity 
is increased. This is consistent with an increase in the elements of xo 
corresponding to activated inputs, but not with an increase in yo, which 
would elevate thresholds for all inputs. 

n 
-w(t) = QW + A [  (y) - yo] [ (x) ~ xi,] nt 

"Note: equation 4.2 is not valid for this case, because XH varies with input patterns. 
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Covariance models (Sejnowski 1977a,b) have been proposed to solve 
the problem that chance coincidences drive synapses to saturate at 7umdX. 
This problem was known to occur in Hebb models of the form (d/dt)w ix 
yx. In a covariance model, (d/dt)w cx (y - (y))(x - (x)).  This is a Hebb 
model with linearly sliding thresholds: y~ = (y), XH = (x). In this case, 
the decay term in equation 4.2 is zero, so synaptic growth is driven by 
the unconstrained equation (d/dt)w = Qw. Thus, the problem of loss of 
selectivity under a Hebbian rule is not avoided by a linear covariance 
rule. 

4.3 Biological Implementation of Constraints. Rules that conserve 
synaptic strength have been criticized as nonlocal (e.g., Bienenstock ~t 
al.  1982). Thus, it is important to note that multiplicative or subtractive 
constraints in their general form (equations 2.1-2.2) can be implemented 
locally if each of a cell’s synaptic weights undergoes decay, either at a 
fixed rate (subtractive decay) or at a rate proportional to its strength 
(multiplicative decay); and if the overall gain of this decay, 7(w) or F(w), 
is set for the cell as a whole, and increases with the cell’s total synaptic 
strength. Such a cellular increase in decay, implemented locally at each 
synapse, might be achieved in at least two ways. First, a cell might have 
a limited capacity to metabolically supply its synapses, so that greater 
total synaptic strength means less supply and thus faster decay for each 
synapse. Second, the overall rate of decay might increase with a cell’s 
average degree of activation, which in turn would increase with the total 
synaptic strength received by a cell. Increased activation could increase 
release of a molecule that degrades synapses, such as a protease, or de- 
crease release of a molecule that supports synapses, such as a trophic, 
adhesion, or sprouting factor (evidence for such mechanisms is reviewed 
in Van Essen et al. 1990). Increased activation might also increase decay 
due to thresholds for synaptic modification, as just discussed. 

5 Discussion 

We have demonstrated that multiplicative and subtractive constraints can 
lead to fundamentally different outcomes in linear learning. Under multi- 
plicative constraints, the weight vector tends to the principal eigenvector 
of the unconstrained time development operator. This is a “graded” re- 
ceptive field in which most mutually correlated inputs are represented. 
Thus, when two equally active eyes compete, both retain equal innerva- 
tion unless the two eyes are anticorrelated. Under subtractive constraints, 
the weight vector tends to a receptive field that is “sharpened” to a sub- 
set of maximally correlated inputs: the weights of these inputs reach the 
maximum allowed strength, while all other weights reach the minimum 
allowed strength. When two eyes compete, subtractive constraints can 
lead to domination by one eye (ocular dominance segregation) provided 
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only that correlations within one eye are stronger than those between the 
eyes. 

The instability of subtractive constraints depends on the unconstrain- 
ed operator having at least two positive eigenvalues, which is typical 
for Hebbian learning. An interesting alternative is anti-Hebbian learning 
(Mitchison 1991): in this case, all unconstrained eigenvalues are reversed 
in sign from the Hebbian case, so typically no eigenvalue is positive. 
Our analysis applies to this case also: multiplicatively constrained dy- 
namics flow to the principal eigenvector, which is the vector that would 
have the smallest eigenvalue under Hebbian dynamics (Mitchison 1991); 
while subtractively constrained dynamics flow to the fixed point, which 
is stable. 

Multiplicative and subtractive constraints represent two fundamen- 
tally different methods of controlling the size of the weight vector. Mul- 
tiplication equally rescales all weight patterns, while subtraction directly 
acts on only a single weight pattern. Because this difference is general, 
many of the results we have found for the linear case may generalize to 
cases involving nonlinear rules. 

Biologically, there is as yet little evidence as to the mechanisms that 
lead activity-dependent plasticity to be competitive or to achieve selectiv- 
ity. Among the two choices of subtractive and multiplicative constraints, 
subtractive seem to resemble biology more closely in systems where 
sharp receptive fields are achieved, and in visual cortex where ocular 
dominance columns are likely to develop without requiring anticorrela- 
tion between the eyes; while multiplicative constraints might resemble 
biology more closely in situations like adult cortical plasticity where con- 
tinually moving and graded representations may occur (Kaas 1991). We 
do not advocate that one or the other of these is the biologically correct 
choice. Rather, we wish (1) to point out that different choices of com- 
petitive mechanism can yield different outcomes, so it is important for 
the modelers to know whether and how their results depend on these 
choices; and (2) to begin to distinguish and characterize different classes 
of such mechanisms, which might then be compared to biology. 

Appendix: Proofs of Mathematical Results 

We study dynamics confined to a constraint surface and governed by a 
general multiplicative constraint (equation 2.1) or by an S1 subtractive 
constraint (equations 2.4). As in the text, we use indices n. b..  . . to refer 
to the eigenvector basis of C. We assume that C is symmetric and thus 
has a complete set of orthonormal eigenvectors e" with corresponding 
eigenvalues A". 

Write the constrained equation as (d/dt)w = f(w). To determine the 
stability of a fixed point w"' [where f(w) = 01, we linearize f(w) about the 
fixed point. Call this linearized operator D; in the eigenvector basis of C, 
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it is a matrix with elements D,,!, = i)fil(w)/i)zu~~w,w,l~. For an S1 constraint, 
f (w)  = PCw is linear (here, P = [l - fin']), so D = PC. We define the 
constraint plane to be the hyperplane tangent to the constraint surface at 
the fixed point, and the constraint vector c to be the vector normal to the 
constraint plane. c is a left eigenvector of D.' 

The stability of a fixed point is determined by the eigenvalues of D 
(Hirsch and Smale 1974). If one eigenvalue is positive, the fixed point 
is unstable; if all eigenvalues are negative, the fixed point is stable. In 
assessing the outcome of the constrained dynamics, we are concerned 
only with stability of the fixed point to perturbations within the constraint 
surface. Thus, if all eigenvalues are negative except one zero eigenvalue 
corresponding to a direction outside the constraint surface, then the fixed 
point is stable. 

Theorem 1 Proof. We consider a multiplicatively constrained equation, 
(rl/dt)w = Cw - ?(w)w. We assume that multiplicative confinement of 
the dynamics to the constraint surface means two things. First, D has 
one zero or negative eigenvalue corresponding to the enforcement of 
the constraint, with associated left eigenvector c .  Therefore any right 
eigenvector of D with positive eigenvalue is parallel to the constraint 
plane. Second, the constraint plane is not parallel to the subtracted vector 
w that enforces the constraint. 

A fixed point is an eigenvector of C: w"' = zu,,e'' for some n, ?(w'I') = 
A''. The linearized operator is D = C - X " l  - zuIle"[V-,(w"')]', where V 
is the gradient operator defined by Vx(x) = I,, e"[i),p(w)/i)zu,,]~,_,. I n  
the eigenvector basis of C, D is a diagonal matrix with the addition of 
one row of off-diagonal elements; such a matrix has the same eigen- 
values as the diagonal matrix alone [because the characteristic equation, 
det(D - X1) = 0, is unchanged by the additional row]. The diagonal 
part of D is the matrix C - X"1 - -he"[e']]', where -h = 7 ( ~ , I [ C ) ~ ( ~ ) / D ~ , I ] I w - n , , , e , , .  
This is the operator C with eigenvalue X" reduced to --h and all other 
eigenvalues reduced by A". Note that e" is the right eigenvector of D 
with eigenvalue - h ;  e" is not parallel to the constraint plane, so - t l  5 0. 

Now we determine whether D has positive eigenvalues. If e" is not 
the principal eigenvector of C, then D has a positive eigenvalue and the 
fixed point is unstable. If e" is the principal eigenvector of C, and it is 
nondegenerate (no other eigenvector has the same eigenvalue), then all 
eigenvalues of D except perhaps a zero corresponding to e" are negative; 
so the fixed point is stable. If C has N degenerate principal eigenvectors, 
and e" is one of them, then D has N - 1 zeros corresponding to pertur- 
bations within the degenerate subspace: the principal eigenvector fixed 
points are thus marginally stable (eigenvalue 0) to perturbations within 

0 this subspace, and stable to other perturbations. 

"Proof. For any Aw in the constraint plane, DAw must remain within the constraint 
plane; that is, c'DAw = 0 for all Aw satisfying c r a w  = 0. Therefore, c ' D  x c'. 
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Lemma 1. Under an S1 constraint, (d/dt)w = PCw with P = (1 - nn'), if 
there is a vector v parallel to the constraint plane such that v'PCV > 0, 
then PC has a positive eigenvalue. 

Proof. v is parallel to the constraint plane, so v . n  = 0 and Pv = v. Thus, 
from v'PCv > 0 we conclude that vTPCPv > 0. Since PCP is symmetric, 
this implies that PCP has a positive eigenvalue; call this eigenvalue Xo, 
with corresponding eigenvector eo. e0 is parallel to the constraint plane, 
that is, PeO = e0 (because eo = PCPeo/XO, and P2 = P). So PCeO = PCPeO = 
Xoeo. 0 

Theorem 2 proof. We consider the S1 constrained equation (d/dt)w = 
PCw. Let v be a linear combination of the two eigenvectors of C with 
positive eigenvalues, such that v is parallel to the constraint plane: v . n  = 
0. Then V'PCV = V'CV > 0. So, by Lemma 1, PC must have a positive 

Theorem 3 proof. This is a generalization of a similar proof in Linsker 
(1986). Suppose PCwF" = "0" when synapses wy and w,"' are both not 
saturated. By "0," we mean that each component of the vector is either 
0, or else of a sign that would take an already saturated synapse beyond 
its limiting value. Let U' be the unit vector with ith weight 1 and all other 
elements 0, and similarly for U'. Consider stability of the fixed point to 
a perturbation confined to the u'/ul plane. The action of C in this plane 
is given by the submatrix 

eigenvalue. 0 

The eigenvalues of Cu,uj are both real and positive when the conditions of 
the theorem are met. Let el and e2 be the two orthonormal eigenvectors 
of Cu,ij, with all synaptic components other than i and j set to zero. As 
in the proof of Theorem 2, let v be a linear combination of el and e2 that 
is parallel to the constraint plane, v . n = 0. Then vTPCv = vTCv > 0. So, 

0 by Lemma 1, the fixed point is unstable. 
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